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Motivated by the non-Newtonian properties of mucus and the bilayer nature of fluid
lining in the pulmonary airways, we investigate surfactant transport on both single and
bilayer fluid systems; the aim is twofold. First, we explore the influence of two principle
rheological properties of mucus, yield stress and shear thinning, on the surfactant
spreading behaviour. Secondly, in these airways, mucus, which has substantial non-
Newtonian properties, overlies the periciliary liquid layer (PCL) which is primarily
Newtonian, and we incorporate this bilayer structure into the analysis. This consists
of the derivation of coupled spatio-temporal evolution equations describing the layer
thicknesses and surfactant concentration. Subsequent analytical methods examine
limiting cases where similarity variables can be usefully employed, and more generally
numerical simulations are performed.

1. Introduction
Modelling the transport of surfactant within the lung under the action of Marangoni

forces is a subject that has been extensively discussed in the literature, primarily by
Grotberg and co-workers (Borgas & Grotberg 1988; Gaver & Grotberg 1990, 1992;
Halpern & Grotberg 1992; Jensen & Grotberg 1992, 1993; Grotberg 1994; Grotberg,
Halpern & Jensen 1995; Halpern, Jensen & Grotberg 1998) and Espinosa, Kamm
and co-workers (Espinosa 1991; Espinosa et al. 1993; Espinosa & Kamm 1997,
1999). These studies are primarily motivated by the need to achieve a fundamental
understanding of the spreading process in relation to surfactant replacement therapy
(SRT) (Shapiro 1989). This is a method of treatment of respiratory distress syndrome
(RDS) which occurs frequently in prematurely born infants with inadequate quantities
of pulmonary surfactant (Robertson 1984) and proceeds via the external delivery of
surfactant. The results of the existing theoretical models, which account for Marangoni
stresses, surface diffusion, gravity, capillarity, solubility, intermolecular forces and
the presence of an endogenous surfactant compare favourably with experimental
observations for Newtonian fluids (Gaver & Grotberg 1992; Matar & Troian 1998;
Bull et al. 1999; Dussaud, Matar & Troian 1999).

Nonetheless there do appear to be some aspects of this important problem that
have remained hitherto unexplored. The effect of the rheological characteristics of
the liquid film lining the inside of pulmonary airways on surfactant transport and a
detailed incorporation of the bilayer nature of this lining constitute notable examples;
our aim is to provide the relevant analysis.

The underlying motivation for this study is the observation that the liquid lung
lining is not a single Newtonian fluid layer. First, the airway surface liquid is a
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Figure 1. A sketch showing the geometry under consideration.

bilayer system, that is, the mucus layer overlies the periciliary liquid (PCL) layer. In
the absence of reliable experimental work which could provide precise values for the
thicknesses of the mucus and PCL layers, their relative thickness was estimated from
data concerning the linings of bovine tracheal airways found in Widdicombe et al.
(1997). This work states that ‘The airways are lined with a film of fluid, which is
5–20 µm deep in healthy individuals’, while the depth of the PCL does not exceed the
length of the cilia, which is approximately equal to 6µm. In the present study, we
have taken the upper three-quarters of the height of the bilayer to consist of mucus;
this 3 : 1 ratio is chosen to be illustrative rather than definitive. Some authors (Sleigh
1991) suggest that within the smaller airways, for which spreading by Marangoni
forces is the dominant mode of surfactant transport, the proportion of mucus to
PCL is actually much lower, and indeed the mucus layer could perhaps be even
discontinuous. In the absence of conclusive experimental evidence from small human
airways, we will use the tracheal values we estimate from Widdicombe et al. (1997)
and simply note that future experiments may lead us, or others, to revisit this issue;
it is important to also realise that some clinical conditions, such as cystic fibrosis,
involve deep mucus layers for which this study will also be relevant. Furthermore, we
will only examine spreading of surfactant on a continuous mucus layer.

The PCL consists of a watery less-viscous material occupied by the cilia, see figure
1; in normal lung function the cilia oscillate and their tips touch the base of the mucus
layer propelling the overlying mucus, and any particles trapped within it, toward the
trachea. The two layers appear to be strongly coupled with the mucus layer and PCL
both flowing (Matsui et al. 1998). Thus the lower viscosity PCL can act as a lubricating
layer and may affect conclusions based upon models which ignore it. Attention is
focused on the potential influence of the two-layer system, wherein the material
properties are markedly different, upon the results deduced for a single-layer system.

Secondly, despite the difficulties in collecting and analysing ‘normal’ mucus it
is clear that mucus is a non-Newtonian fluid (Yeates 1991). Indeed many studies
(Quraishi, Jones & Mason 1998 and references therein) suggest that nasal and lung
mucus are markedly non-Newtonian with an appreciable elasticity (measured by the
‘spinnability’), shear thinning, thixotropy, and a yield stress (Davis 1973; Basser,
McMahon & Griffith 1989); the latter is required to carry the particulate debris
which are to be removed from the lung. Moreover, different diseases and situations
can cause wide variations in the measured material properties. The issues connected
with non-Newtonian properties are not currently addressed by the mathematical
models available, although there is mention in the literature of the importance
of mucus rheology in neonatal respiratory distress syndrome (Rubin, Ramirez &
King 1992). Although this study is primarily motivated by a need to accurately
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model the spreading process in connection with SRT, interest also exists in bilayer
thin films in industrial coating processes; often materials, such as paints, have an
appreciable non-Newtonian behaviour (Barnes 1999). To ascertain the importance of
non-Newtonian behaviour we utilize yield-stress, shear-thinning materials using as our
rheological model the Herschel–Bulkley constitutive law (Herschel & Bulkley 1923).
It is important to appreciate that mucus undoubtedly has viscoelastic behaviour,
and that the surfactant itself may alter the material properties such as yield stress
and viscoelastic parameters (Rubin et al. 1992), but we shall leave the yet further
complicating aspects of those issues for future work.

The analysis in this paper relies upon utilizing the remarkably thin fluid layers
that exist in the lung lining, which leads naturally to lubrication theory; the basic
formulation for a bilayer film, relevant scaling, and thin-layer expansion are given
in §§ 2, 3 and 4, respectively. A brief analytical study based upon similarity variables
is presented in § 5 and we then collect together our numerical results in § 6. There
we consider a single layer of yield-stress, shear-thinning material in § 6.1 with the
equivalent bilayer system being considered in § 6.2. Finally, in § 7 we provide some
concluding remarks.

2. Formulation
We now formulate the problem of a thin bilayer system of immiscible Herschel–

Bulkley materials.

2.1. The governing equations

Two thin films of incompressible material lie on a flat horizontal plane (the cell
surface). Exogenous surfactant is introduced at the free surface and the resultant flow
is induced by surface tension gradients that arise due to the presence of gradients
in surfactant concentration. This so-called Marangoni flow occurs in the direction of
the uncontaminated mucus layer as shown in figure 1, which depicts the geometry
of flow. For definiteness we shall initially assume axisymmetry, although the anal-
ysis is easily adapted to planar configurations; a unified notation will be adopted
following non-dimensionalization. Fluid motion is described by the velocity field,
(u(r, z, t), 0, w(r, z, t)), in cylindrical polar co-ordinates with origin coincident with the
centre of applied surfactant, as shown in figure 1, while pressure is denoted by p(r, z, t);
the mucus and PCL layers have density ρ and ρd, respectively. The total fluid height
is h(r, t) and the PCL layer has height d(r, t); all material variables associated with
the PCL have the distinguishing subscript d.

The equations for the film in the upper layer are given by conservation of momen-
tum,

ut + uur + wuz = −1

ρ
pr +

1

ρ

[
τrr,r + τrz,z +

1

r
(τrr − τθθ)

]
, (2.1)

wt + uwr + wwz = −1

ρ
pz − g +

1

ρ

[
τzr,r + τzz,z +

τrz

r

]
, (2.2)

and continuity,

∂r(u) + wz = 0, (2.3)

where τij denotes the components of the deviatoric stress tensor and the subscripts
(r, z, t) denote partial derivatives, except in the case of derivatives of the stress
components, τij,j , where the last subscript refers to the derivative. For axisymmetric
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geometry we use the notation ∂r( ) ≡ r−1(r[ ])r . For a visco-plastic fluid, these stresses
are related to the strain rates through a constitutive model, which will be discussed
shortly. The equations for the lower layer are identical, but with the addition of the
d subscripts to distinguish different material parameters.

The concentration of surfactant, Γ (r, t), satisfies a surface transport equation

Γt + ∇s · (usΓ ) + (∇s · n)Γ (u · n) = D∇2
sΓ + J (2.4)

on z = h(r, t); a derivation and discussion of the physical meaning of the terms in this
equation can be found in Stone (1990). Equation (2.4) contains gradient operators
defined on the surface: the surface gradient operator, ∇s, is ∇s = [I − n n] · ∇ ≡ Is · ∇
and us is the surface velocity: us = Is · u. In addition, the term D is a measure of
surface diffusion and J represents the flux of material to the interface – a term which
is henceforth ignored.

In this paper it is assumed that the surfactant is insoluble in the mucus. Hence
equation (2.4) is not coupled to a concentration advection–diffusion equation in the
bulk. The governing equations are coupled to an equation of state which relates the
surface tension to the surfactant concentration. These equations are solved subject to
the following boundary conditions:

no-slip at the solid substrate,

u = 0 and w = 0 on z = 0, (2.5)

and at the mucus–air interface, z = h(r, t),

ht + uhr = w. (2.6)

The Boussinesq–Scriven description of a Newtonian interface (Edwards, Brenner &
Wasan 1991) is adopted which introduces an extra stress tensor, τ s,

n · τ s = −σ(∇s · n)n+ ∇sσ, (2.7)

into the free-surface boundary condition. In (2.7) the surface tension, σ, and the
normal to the free surface, n = (−hr, 0, 1)/

√
h2
r + 1, naturally appear in the extra

stress equation. Provided contributions due to the surface viscosities are neglected,
the free-surface boundary condition, at z = h(r, t), is expressed by

n · (τ − Ip) = n · τ s. (2.8)

At the mucus–PCL interface, z = d(r, t), the velocities are continuous as is n·(τ−pI );
we additionally assume that there are no surfactants at z = d(r, t) and hence no surface
tension gradients or surface viscosities acting at this interface. Surface tension could
be included into the interfacial boundary condition, but as the surfactant at the air–
liquid interface is assumed insoluble there will be no gradients of surface tension at
z = d(r, t), and the curvature-dependent term will become a higher-order contribution
after the later scalings are applied. We therefore choose to omit this from the analysis
at the outset by assuming that there are no interfacial surface tension effects. Moreover
we assume that the density of the lower layer is greater than that of the upper layer
to prevent buoyancy-driven convection.

2.2. Rheology

As discussed earlier two important rheological properties of mucus are yield stress
and shear thinning; undoubtedly also important are viscoelastic properties, but we
concentrate upon modelling the former. Mucus is composed of a network of cross-
linked mucins (Moriarty & Grotberg 1999; Wu & Carlson 1991) and this structure
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Constants Mucus values Source

Viscosity†, λ (P) 10−2–102 Silberberg (1983)
Yield stress, τp (dyn cm−2) 103 Silberberg (1983)
Layer thickness, H (cm) 10−4 Widdicombe et al. (1997)
Length scale, L (cm) 10−2 Jensen (1994)
Density, ρ (g cm−3) 1 ∼ Water
Spreading pressure, S (dyn cm−1) 10 Rubin et al. (1992)
Gravity, g (cm s−2) 981
Surface diffusivity‡, D (cm2 s−1) 10−6–10−4 Sakata & Berg (1969)
Power law exponent, n 0.3–0.5 Basser et al. (1989)

Table 1. Order-of-magnitude estimates for the physical constants associated with mucus where the
data are taken, or estimated, from a variety of sources. † For viscosity, the lower value is that of
water and the higher ranges of viscosity in part reflect those due to a variety of medical conditions
and are additionally estimated from the results in Silberberg (1983); PCL is taken to have viscosity
10−2 P. ‡ The diffusivities take a range of values around 10−5 which is the typical value taken by
Sakata & Berg (1969).
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Figure 2. A sketch of the constitutive relations for the Bingham fluid (dot-dashed line), a Newtonian
fluid (dashed line) and a Herschel–Bulkley material with n < 1 (solid line) for simple shear; the
scales are arbitrary.

endows mucus with an inherent strength – hence the yield stress which can be sub-
stantial (see table 1). During flow this structure is progressively broken down leading
to the nonlinear dependence of shear rate upon the the applied shear. A rheolog-
ical model widely used in chemical engineering to capture this behaviour for yield
stress materials, often leading to very accurate predictions, is the Herschel–Bulkley
model (Herschel & Bulkley 1923; Sherwood & Durban 1998); some recent applica-
tions from geophysical flows with comparisons between experiment and theory are in
Coussot (1994), Huang & Garcia (1998), and Balmforth et al. (2000). We adopt the
Herschel–Bulkley model herein:

τij =

(
Kγ̇n−1 +

τp

γ̇

)
γ̇ij for τ > τp and γ̇ij = 0 for τ < τp. (2.9)

The second invariants of the deviatoric stress tensor, τij , and the strain-rate tensor,

γ̇ij , are defined as τ =
√
τjkτjk/2 and γ̇ =

√
γ̇jkγ̇jk/2. The yield stress is τp, and K is

the consistency; the model only allows flow to occur if the yield stress is exceeded.
A sketch of the stress–strain-rate relations is shown in figure 2. There is a slightly
simpler rheological model, the Bingham material, wherein once the yield stress is
exceeded, then deviatoric stress is directly proportional to the shear rate; thus n = 1
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and K = λ = ρν, where λ is the plastic viscosity and ν is the kinematic viscosity.
Hence, in this case, K is just conventional viscosity. In general, K provides a measure
of resistance to shear. The parameter n characterizing the nonlinearity in the flow
regime determines whether the fluid is shear thickening (n > 1) or shear thinning
(n < 1), the latter being more relevant here (Basser et al. 1989).

3. Non-dimensionalization
The above equations are rendered dimensionless as follows. A characteristic thick-

ness of the fluid layer,H, is taken as the dimension of z, andL denotes a characteristic
horizontal length scale. We measure the speed u by V, and w by HV/L, and time
by L/V so that,

r =Lr̃, z =Hz̃, u =Vũ, w = (VH/L)w̃, t = (L/V)̃t and h =Hh̃,
(3.1)

in which the tilde denotes dimensionless quantities. To non-dimensionalize the bound-
ary conditions and equations involving the surfactant and surface tension we introduce

σ = σm +Sσ̃, Γ = ΓmΓ̃ . (3.2)

The terms Γm and σm represent the saturation values of surfactant and surface tension;
S = σ0 − σm corresponds to the spreading pressure wherein σ0 is the surface tension
of a perfectly clean, surfactant-free interface.

For pressure we introduce p =Sp̃/H, and, provided we use the Herschel–Bulkley
model, then for general n we define

λ =
KVn−1

Hn−1
. (3.3)

We then select the characteristic velocity scale as

V =
SH
λL , (3.4)

which expresses a balance between Marangoni stresses and viscous retardation. The
strain rates and stresses scale as

τij =
λV
H τ̃ij , γ̇ij =

V
H ˜̇γij , (3.5)

and are given in detail in equations (3.12) and (3.13).
On substituting the non-dimensional variables into the governing equations, and

discarding the tilde, we arrive at the standard lubrication equations in the upper
layer:

Re (ut + uur + wuz) = −pr + ετrr,r + τrz,z + ε
1

r
(τrr − τθθ), (3.6)

ε2Re (wt + uwr + wwz) = −pz −G+ ε2τzr,r + ετzz,z + ε2 τrz

r
, (3.7)

∂r(u) + wz = 0. (3.8)

In the above equations, a number of non-dimensional parameters appear. These are
ε =H/L, the aspect ratio of the fluid layer, the Reynolds number, Re, and the Bond
number, G, which measures the relative importance of gravity versus surface tension
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Non-dimensional parameter: ε Re B G Pe

Representation H/L ρHV2/S τpL/S ρgH2/S LV/D
Typical value 10−2 10−7–10 1 10−6 1–105

Table 2. Typical values of non-dimensional numbers, given the physical constants in table 1.

gradients. These parameters are defined by

Re ≡ ρHV2

S , and G ≡ ρgH2

S , (3.9)

and typical values are in table 2.
For a bilayer system we have another fluid in 0 < z < d where, as before, the

subscript d on all material constants will denote those associated with the PCL layer:

ρd

ρ
Re (ut + uur + wuz) = −pr +

λd

λ

[
ετrr,r + τrz,z + ε

1

r
(τrr − τθθ)

]
, (3.10)

ε2ρd

ρ
Re (wt + uwr + wwz) = −pz − ρd

ρ
G+

λd

λ

[
ε2τzr,r + ετzz,z + ε2 τrz

r

]
, (3.11)

together with continuity as in (3.8).
In table 2 we summarize the main non-dimensional parameters of the problem

together with order-of-magnitude estimates (based on the physical constants listed in
table 1).

With the exception of the scaling adopted in (3.3), the development thus far
parallels that of the Newtonian case with the stress–strain-rate constitutive relation
as yet undetermined. We introduce the units V/H for the strain rates so that the
non-dimensional constitutive relations become

γ̇ij =

 2εur 0 uz + ε2wr

0 2εu/r 0

uz + ε2wr 0 2εwz

 . (3.12)

Using (3.12) and the dimension λV/H for τij , we construct the dimensionless stress
components through

τij =

[
γ̇n−1 +

B

γ̇

]
γ̇ij , (3.13)

in d < z < h, and if we so desired with nd and Bd replacing their sister variables
in 0 < z < d. The relation (3.13) is valid provided τ > B (τ > Bd), where a non-
dimensional group parameterizing the characteristic yield stress, τp, emerges:

B =
τpH
λV ≡ τpL

S . (3.14)

Otherwise, if τ < B the constitutive law suggests that γ̇ij = 0. We sometimes refer to
B as the Bingham number, in analogy with the situation when n = 1. We shall not
consider the PCL as having a yield stress; we shall neither define nor use a Bingham
number in that layer.
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The surface boundary conditions are

ht + uhr = w

τrz + phr = εhrτrr + σr

p = ε(τzz − εhrτrz)

 on z = h(r, t). (3.15)

In addition, the surfactant transport equation becomes

Γt + ∂r(usΓ ) =
1

Pe
∂r(Γr) + O(ε) (3.16)

with the surface Péclet number defined as Pe = LV/D. Here us now denotes
the radial component of the surface velocity. At the mucus–PCL interface, located
at z = d(r, t), the velocity is continuous and dt + udr = w. The stress relations
τrz + pdr − εdrτrr , p− ε(τzz + εdrτrz) are also continuous. The boundary conditions on
z = 0 remain as u = 0 and w = 0.

4. The thin-layer equations
In this section, evolution equations for h, d and Γ are derived in the lubrication

approximation within which only leading-order terms in ε are retained. In the gov-
erning momentum equations the curvature terms do not occur at this order, hence
from hereon a notation which unifies axisymmetric, (r, z), and plane Cartesian, (x, z),
geometries is adopted by defining a new variable η as

η =

{
x strip

r drop
, ∂η[ ] =

{
∂x[ ] strip

(1/r)∂r[r] drop
, ( )η =

{
( )x strip

( )r drop
. (4.1)

Then

pz = −G, −pη + τηz,z = 0 in d < z < h, (4.2)

and

pz = −ρd
ρ
G, −pη +

1

µ
τηz,z = 0 in 0 < z < d, (4.3)

where µ = λ/λd, and with boundary conditions on z = h(η, t) that

ht + uhη = w, τηz = ση, p = 0 + O(ε2), (4.4)

wherein capillary effects have been neglected since they arise at O(ε2) (Jensen &
Grotberg 1993). In addition the surface transport equation

Γt + ∂η(usΓ ) =
1

Pe
∂η(Γη) (4.5)

on z = h(η, t) is required together with an equation of state relating the surfactant
concentration to the surface tension. Note that even though Pe 6 O(105) (as shown in
table 2, that is, 1/Pe can be of order ε) we nevertheless retain surface diffusion effects
in equation (4.5). We justify this by arguing that the parameter multiplies higher-
derivative terms, giving the equations a singular perturbation; their omission leads
to the non-smooth shock-like similarity solutions of § 5. These effects also provide an
additional driving mechanism for spreading, endowing (4.5) with a parabolic character
and giving rise to smooth solutions.
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For an equation of state we choose to adopt the relation

σ(Γ ) = (β + 1)[1 + θ(β)Γ ]−3 − β; θ(β) = [(β + 1)/β]1/3 − 1, β = σm/S, (4.6)

introduced by Sheludko (1967) and extensively used by Grotberg and co-workers;
other equations of state based upon Langmuir or Frumkin isotherms could also be
considered (Edwards et al. 1991). For β > 5 the equation of state yields solutions
quantitatively little different from a linearized relationship. Since our subsequent
numerical simulations are an investigation of rheological effects we shall in those
sections take β to be large.

At the mucus–PCL interface z = d(η, t) the velocity and pressure are continuous
and

dt + udη = w, µτ+
ηz = τ−ηz, u+ = u− on z = d, (4.7)

where the superscripts + and − denote the limiting values as we approach the
interface from above and below respectively and the boundary conditions on z = 0
are simply that u = 0 and w = 0.

Inspection of the typical values listed in table 2 reveals that for the extremely thin
layers in the current application G � 1, indicating that gravity plays little role and is
therefore neglected henceforth. Solution of (4.2) and (4.3) yields p = 0 and τηz = ση
for d < z < h and τηz = µση for 0 < z < d. Except for the viscosity (consistency)
changes, these are independent of the constitutive relation which only comes into
play when the stress is related to the strain rate whereupon it becomes evident that

u(η, z, t) =

{
[ση − B]

1/n
+ (z − d) + (µση)

1/ndd in d < z < h

(µση)
1/ndz in 0 < z < d.

(4.8)

The function [ση − B]+ is ση − B for ση > B and is zero otherwise. We now define
the volume fluxes in the layer as

U(η, t) =

∫ h

0

u(η, z, t) dz and Ud(η, t) =

∫ d

0

u(η, z, t) dz (4.9)

and hence from (4.8) that

U(η, t) = [ση − B]
1/n
+

[
1
2
(h2 − d2)− d(h− d)]+ (µση)

1/ndd(h− d/2) (4.10)

and

Ud(η, t) =
(µση)

1/nd

2
d2. (4.11)

Utilizing the equation of continuity, the evolution equations for the heights of the
layers are

ht + ∂ηU(η, t) = 0, dt + ∂ηUd(η, t) = 0, (4.12)

with the surfactant evolving according to

Γt + ∂η[Γ ([ση − B]
1/n
+ (h− d) + (µση)

1/ndd)] =
1

Pe
∂ηΓη. (4.13)

Equations (4.12) and (4.13) govern the spatio-temporal evolution of h(η, t), d(η, t)
and Γ (η, t). These coupled evolution equations are now explored both analytically
and numerically. In the absence of yield stress and if, furthermore, both layers
have identical shear-thinning properties, that is n = nd, then equations (4.12) can be
combined to give

[h+ (µ1/n − 1)d]t + 1
2
∂η(σ

1/n
η [h+ (µ1/n − 1)d]2) = 0. (4.14)

and equation (4.13) also contains the combination h+ (µ1/n − 1)d.



244 R. V. Craster and O. K. Matar

5. Similarity solutions
In this section we shall derive similarity solutions of the first kind to describe the

spreading process on bilayer systems. These solutions approximate the flow over large
regions of the spatial domain and provide useful limiting relations for comparison
with the numerical solutions discussed in § 6.

5.1. Negligible yield stress (B = 0)

It is evident that as Pe → ∞ the evolution equations describing the dynamics of a
single Newtonian or power-law fluid layer can admit similarity solutions (Jensen &
Grotberg 1992; Jensen 1994). Similarity solutions also exist for bilayer (or multilayer)
systems in the absence of yield stresses in which the nonlinearity associated with
the shear-thinning rheology is identical in each layer, that is n = nd; each layer
only differs in its viscosity (consistency). The analysis required is ultimately similar
to that of Jensen & Grotberg (1992), Jensen (1994); however we persist in briefly
describing these solutions here, in part because the effect of shear thinning is to alter
the characteristic scalings often quoted and used in surfactant spreading analyses,
and in part because we shall compare these bilayer similarity solutions with the later
numerical results.

In order to extract similarity solutions we linearize the equation of state (4.6) so
that ση ≡ −Γη; then for a power-law fluid we use the similarity variable ξ = η/[ξst

a].
The parameter ξs simply rescales the solutions so that the surfactant front is at
ξ = 1; ξs is explicitly defined in equation (5.11). The variables are defined as h(η, t) =
H(ξ), d(η, t) = D(ξ), and Γ (η, t) = ξ1+n

s G(ξ)/tb. Furthermore, it is convenient to define
J(ξ) = H(ξ) + (µ1/n− 1)D(ξ). Then with a total mass of surfactant Qtα (the parameter
α allows for an increasing amount of surfactant to be introduced) the powers a and
b emerge (Jensen 1994) as

a =
α+ n

3 + n

(
or a =

α+ n

2 + n

)
, (5.1)

b =
(2− α)n− α

3 + n

(
or b =

(1− α)n− α
2 + n

)
. (5.2)

These results are for a spreading drop (or a strip). It is worthy of mention that a
boundedness constraint on Γ imposes the restriction b > 0 from which the following
constraint is imposed on α: α 6 2n/(1+n) (or α 6 n/(1+n) in rectilinear coordinates).
The limit n = 0 is analogous to a yield-stress-dominated layer; here the scalings are
a = α/3, b = −α/3 and for a fixed initial mass of surfactant these are zero and the
spreading process stops. For brevity hereon we just consider the spreading rate of a
fixed mass of surfactant α = 0, then shear thinning has n < 1. From values estimated
from Basser et al. (1989) for their mucus analogue material a value of n = 1/2 for the
flow index appears reasonable; then, for that value, t1/7 is the spreading rate rather
than the conventional Newtonian value t1/4; in general shear thinning markedly slows
the distribution of surfactant.

The bilayer equations rescale using the similarity transformation to

a(ξ2G)ξ − [ξG J(−Gξ)1/n]ξ = 0, (or a(ξG)ξ − [GJ(−Gξ)1/n]ξ = 0), (5.3)

aξJξ − 1
2
∂ξ[J

2(−Gξ)1/n] = 0, aξDξ − 1
2
µ1/n∂ξ[D

2(−Gξ)1/n] = 0, (5.4)

with the notation for ∂ξ and ( )ξ following from (4.1). The first equation integrates to
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give

Gξ = −
(
aξ

J

)n
Θ(1− ξ), (5.5)

whereΘ(1−ξ) is the Heaviside function defined to be zero for ξ > 1 and one otherwise.
With the boundary conditions on ξ > 1 that H = 1, G = 0 and D = d0 (< 1) then
the solutions for ξ < 1 are that

G(ξ) = −
(

a

2J−

)n
(ξ1−n − 1)

(1− n)
(

or G(ξ) = −
(

a

2J−

)n
(ξ − 1)

)
, (5.6)

for ξ < 1 in which the parameter J− = [1 + (µ1/n − 1)d0] and

J(ξ) = 2J−ξ2 (or J(ξ) = 2J−ξ) , (5.7)

and

D(ξ) =
2J−
µ1/n

(
1−

(
1− µ1/nd0

J−

)1/2
)
, (5.8)

that is, D(ξ) is simply a constant, or

D(ξ) =
2J−
µ1/n

ξ2

(
or

2J−
µ1/n

ξ

)
. (5.9)

This latter solution is inconsistent with the jump conditions at the shock, unless the
mucus is completely absent and d0 = 1, but it does play a role in some of the later
solutions. It additionally implies that for some value of ξ bounded below by

ξ2 =
1

2

(
1−

(
1− 2µ1/nd0

J−

)1/2
)

(5.10)

and above by one then, for the strip solution, for instance, the constant solution will
revert to (5.9). The height field follows from J(ξ) and the scaling variable ξs is

ξs =

[
2Q(3− n)
(a/2J−)n

]1/(3+n)
(

or ξs =

[
2Q

(a/2J−)n

]1/(2+n)
)
, (5.11)

which requires the initial mass of surfactant to be conserved, with the choice of initial
condition chosen in the numerical work (§ 6)

Q = 1/2
(
or Q =

√
π/2

)
.

5.2. Large yield stress (B � 1)

Once again we concentrate upon the analysis for a finite mass of deposited surfactant,
but now in the mucus layer we consider B � 1 (or equivalently n� 1). The similarity
equations now become

aξDξ − µ1/nd

2
∂ξ[(−Gξ)1/ndD2] = 0, (5.12)

a(ξ2G)ξ − µ1/nd[ξGD(−Gξ)1/nd]ξ = 0 (or a(ξG)ξ − µ1/nd[GD(−Gξ)1/nd]ξ = 0),

(5.13)

aξHξ − µ1/nd∂ξ

[
(−Gξ)1/ndD

(
H − D

2

)]
= 0. (5.14)
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Figure 3. The height profile, shown as a dashed line, for a yield-stress-dominated layer versus the
similarity variable; the solid line shows 2ξd0. The parameter values are µ = 1, nd = 1 and ε = 0.1.

Notably, the height variable, H(ξ), does not appear in the PCL height and surfactant
evolution equations, (5.12) and (5.13). These remain coupled and can be solved
independently with their solutions driving the height evolution equation (5.14).

Equation (5.13) can be integrated directly yielding (5.5) for Gξ , but with J re-
placed by µ1/ndD(ξ). The natural way of dealing with the height evolution equation,
(5.14), which is driven by functions that suddenly change character when ξ < 1,
is via generalized functions. Substitution of a trial solution of the form D(ξ) =
d0 [f1(ξ)Θ(1− ξ) + [1−Θ(1− ξ)]] along with (5.5) into (5.12) yields f1(ξ) = 2ξ2 (or
f1(ξ) = 2ξ for the strip case) as we naturally expect (Jensen & Grotberg 1992), so
that we may express the solution generally as

D(ξ) = d0[2ξ
m+1Θ(1− ξ) + [1−Θ(1− ξ)]], (5.15)

wherein m is a geometric parameter such that m = 0 for rectilinear geometry and
m = 1 for the axisymmetric case. Substitution of H(ξ) = f2(ξ)Θ(1− ξ) + (1− f3(ξ)),
along with the solutions for D and Gξ into (5.14) yields

H(ξ) = 2d0ξ
m+1Θ(1− ξ) +

(1− d0)

m+ 1
δ(1− ξ) + [1−Θ(1− ξ)], (5.16)

in which δ(1− ξ) is the Dirac delta function. Initially this infinite jump at the shock
position appears disturbing; however it is in agreement with the integration of the
governing equation across the jump at ξ = 1. Thus both D(ξ) and G(ξ) follow the
usual Newtonian results suitably rescaled, whereas (5.16) predicts the development of
a sharp peak in the height profile at the surfactant leading edge in this particular
limit, B � 1. That is, in this limit, for ξ < 1 the mucus layer apparently disappears
and becomes concentrated at the point ξ = 1 before adjusting to H = 1 for ξ > 1.

In reality, however, the presence of surface diffusion partially smooths these sharp
cut-offs and to investigate the solution in the neighbourhood of ξ = 1 we regularize
the Θ and δ terms by redefining Θ(1− ξ) as

Θ(1− ξ) ∼ 1

2

(
tanh

[
1− ξ
ε

]
+ 1

)
(5.17)

for some ε � 1 where ε is the regularization parameter. The δ-function is defined
from the derivative of Θ(1−ξ). Integrating the equation (5.17) numerically backwards
from large ξ where H = 1 leads to height profiles such as that shown in figure 3; the
large peak at ξ = 1 (which can be made arbitrarily large by reducing ε) emerges due
to the Θ(ξ − 1) and δ(1− ξ) terms as predicted by (5.16). These predictions are also
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confirmed by numerical simulations of the full governing evolution equations; these
are discussed in § 6.

5.3. Physical balances

An alternative analysis based upon dimensional scalings involves balancing the driving
forces against those restraining motion. The latter are shear stresses integrated over
the basal region beneath the induced flow

FB ∼ λR2γ̇n (or FB ∼ λLγ̇n), (5.18)

where we use the length scales R and L to distinguish between the axisymmetric and
strip geometries respectively, and the strain rates are

γ̇ ∼ R/TH (or γ̇ ∼ L/TH). (5.19)

The driving forces are the surface tension gradients integrated over the area occupied
by surfactant

FD ∼ ΓR (or FD ∼ Γ ). (5.20)

There is also the mass constraint that

QTα ∼ ΓR2 (or QTα ∼ ΓL). (5.21)

Balancing the forces subject to that constraint recovers the basic scalings in equations
(5.1), (5.2). It is evident from balancing forces that a bilayer system will not alter these
basic scalings, unless the nonlinearity of the restraining forces differs in each layer.

6. Numerical results
The coupled evolution equations (4.12) and (4.13) are now solved numerically

using an adaptive grid scheme; the scheme is specifically designed to solve nonlinear
parabolic equations, and is described in some detail by Blom & Zegeling (1994). It
has been successfully utilized in other situations involving rapidly changing solutions,
and highly nonlinear governing equations, for instance in tracking splitting pulses
in chemical autocatalysis (Doelman, Kaper & Zegeling 1997) and related instability
problems (Balmforth, Craster & Malham 1999). Thus we have confidence in its ability
to deal with the current numerical difficulties, including the shock-like structure. The
only minor change is that we choose to adapt the grid ignoring the surfactant
concentration, and adapt it using only the total and PCL height profiles; this ensures
that we concentrate most points at the most severe changes in the spatial gradients,
particularly in the neighbourhood of the shock-like structure at the surfactant leading
edge. As a further consistency check upon the accuracy of the numerical simulations
we also performed comparative evaluations using a finite-element collocation scheme
(Keast & Muir 1991) and related numerical schemes using finite differences (Matar
& Troian 1999a, b); the results were virtually indistinguishable in each case although
the finite-element calculations required double the number of grid points than the
adaptive scheme to obtain the same relative accuracy. Typically we employed two
thousand grid points on a computational domain of length ten.

One convenient approach (Jensen & Grotberg 1992; Matar & Troian 1999a) is to
move the numerical scheme to a frame of reference where one utilizes the similarity
variable. We do not adopt this line of attack here as the yield stress, and differing
power-law exponents in the PCL and mucus layers, break this self-similar scaling,
and in some cases the solutions become stationary. We do, however, compare our
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Figure 4. The Newtonian case: simulation for a strip with Pe = 1000, β = 1000, n = 1, B = 0. The
solution is shown at times t = 1 (dashed), t = 5 (dot-dash) and t = 10 (solid line). (a), (b) and
(c) The evolution of the height of the mucus layer, surfactant concentration and surface tension
gradient respectively with time. (d) The height versus the Newtonian similarity coordinate, and the
similarity solution is shown as · ·+ · · .

numerical solutions with the predictions of the similarity solutions derived analytically
in § 5.

Spreading is forced by the initial conditions which in the computations we take to
be

Γ (η, 0) = exp(−η2), h(η, 0) = 1, d(η, 0) = d0, (6.1)

where d0 is a constant height with 0 < d0 < 1. Initial conditions which are similar in
form to (6.1) have previously been used to provide a smooth approximation to the
concentration of surfactant within a monolayer (Jensen & Grotberg 1992). We also
specify that the first spatial derivatives of Γ , h and d all vanish at the origin. At a
point η∞ that is effectively at infinity (most figures have the rightmost η-axis value
as 6; however the numerical grid extends out, at least, to η = 10) Γη(η∞, t) = 0 and
the heights remain at their undisturbed initial values. We also fix the Péclet number
to be Pe = 1000. This choice of Pe is in line with the scalings deduced earlier and
corresponds to a primarily Marangoni-driven spreading process with corrections due
to surface diffusion. Larger values of Pe lead to rapidly varying spatial gradients
which are potentially more difficult to resolve accurately, while lower values are not
entirely representative of typical spreading conditions; the rapid changes in the height
profile at the surfactant front are reduced slightly as the Péclet number decreases.
Computations are performed for times up to t = 40–100. These values are chosen to
be long enough to enable comparisons with the self-similar solutions.

6.1. Single layer

We now systematically explore the various rheological cases within the single-layer
context. As a preliminary step, however, we also provide results of numerical simula-
tions for the Newtonian case (B = 0 and n = 1), shown in figure 4, for comparative
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purposes. Particularly prominent in figure 4 is the shock feature at the surfactant
leading edge. Although lubrication theory may be violated within this narrow region,
with neglected terms providing first-order contributions, the model still provides an
accurate representation of the majority of the flow.

The dimensionless times, 1, 5 and 10, at which we display the results in figure 4
show the evolution of the solution towards that given by the similarity analysis. We
use the same choices of times in most subsequent figures; at a dimensionless time
of 10 the solutions have evolved sufficiently that they are no longer dependent upon
the initial condition, and, where they exist, similarity solutions are then approached.
Those figures including a longer time, are those for which this convergence took
noticeably longer. A comprehensive analysis of the Newtonian results have been
presented by Jensen & Grotberg (1992); further discussion of these results is omitted
from the present work.

6.1.1. Effect of B (n = 1)

We fix the power-law parameter, n, such that n = 1 and vary B, thus exploring
yield stress. Typical results for this scenario with B = 0.2 are shown in figure 5; for
other values of B one ultimately obtains solutions which follow a qualitatively similar
physical evolution.

The effect of a yield stress is to restrain motion such that if at the free surface
ση(η, t) < B, then there is no flow at that value of η. Following the thin-layer theory

above, u(η, z, t) = [ση − B]
1/n
+ z, thus those specific η where ση = B separate regions of

flow from those which are static; incidentally this is completely different from the
situation that arises in gravity current flows of yield-stress materials such as muds
or lavas (Liu & Mei 1989; Balmforth & Craster 1999; Balmforth et al. 1999) where
a weakly yielded plug region rides atop flowing material. In the present situation
there are unyielded regions and atop these regions the surfactant moves along the
surface purely by diffusion; thus a strong yield stress effectively restricts surfactant
from moving outside these regions. In particular, the initial surfactant profile must
have gradients sharp enough to initiate flow for anything other than pure diffusion
to take place. It is notable that the yielding behaviour is not dependent upon the
surface tension itself, but the crucial quantity is the surface tension gradient. Also, the
surface diffusion together with advection acts to decrease the surface tension gradient
and hence the height profiles eventually become ‘frozen’ in place. Inspection of the
numerical solution for the film height and the position of the front (the location of the
surfactant leading edge), shown in figures 5(a) and 5(d), respectively, reveals that both
the evolution of the film thickness and the spreading rate gradually stop; the height
profiles remain fixed at the position shown for t = 10. The surfactant, on the other
hand, is initially swept along by the flow, but ultimately moves by diffusion. More
revealing is the surface tension gradient shown in figure 5(c): at t = 10 the majority
of the material is still yielding, but only imperceptibly and the surface velocity, shown
in figure 5(e), is negligible. Figure 5(d) shows the front position, that is the point at
which the height adjusts to undisturbed conditions at the surfactant leading edge, and
simply illustrates that the usual Newtonian similarity scaling of t1/3 for the strip case
is initially followed by these flows, but is ultimately not adhered to, and eventually
flow ceases.

One initially odd feature of figure 5(a) is the sharp peak in the height profile near
the origin, which might lead one to assume that the boundary condition hη(η, 0) has
been violated. In fact, however, the condition is maintained very close to the origin
and this feature emerges as the surface tension gradient is locally zero there; thus the
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Figure 5. The yield stress case: simulation for a strip with Pe = 1000, β = 1000, n = 1, B = 0.2.
The solution is shown at times t = 1 (dashed), t = 5 (dot-dash) and t = 10 (solid line). (a), (b) and
(c) The evolution of the height of the mucus layer, surfactant concentration and surface tension
gradient respectively with time. (d) The front position versus time for several values of B. (e) The
surface velocity for the Bingham simulation, and for comparative purposes the Newtonian velocity
is shown in (f).

yield stress only allows surfactant to move by diffusion and this maintains the locally
large height profile.

It is also worth noting that, for a fixed quantity of surfactant, the initial distri-
bution can be important. It is vital that the surface tension gradient is sufficiently
large to overcome the yield stress, or no flow will occur. Ultimately, for any initial
distribution which drives a flow the surfactant spreads and the gradient decreases,
leading eventually to stationary solutions.

6.1.2. Effect of n (with B = 0)

In order to isolate the influence of shear thinning on the spreading process we
remove the yield stress by setting B = 0 and examine the effect of decreasing n on
the flow profiles. Inspection of the results of a typical simulation, shown in figure
6, reveals that the effect of lowering n ultimately mimics a yield stress. That is,

the driving force ∼ σ
1/n
η and once the surface tension gradients decrease sufficiently,
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Figure 6. The power-law case: simulation for a strip with Pe = 1000, β = 1000, n = 0.5, B = 0.
The solution is shown at times t = 1 (dashed), t = 5 (dot-dash) and t = 10 (solid line). (a), (b) and
(c) The evolution of the height of the mucus layer, surfactant concentration and surface tension
gradient respectively with time. (d) The front position versus time for several values of the power
law parameter n.

spreading by Marangoni stresses is significantly retarded, leaving the surfactant no
option but to primarily spread by diffusion. The front position scalings shown in
figure 6(d) follow those deduced in § 5 and illustrate the reduction in the spreading
exponent with increasing degree of shear thinning. Another point worthy of comment
is the origin of the change in slope at early times in figure 6(d): this occurs at the
point in time at which the dynamics are no longer governed by the initial conditions,
but now take on their long-time self-similar behaviour. The retardation of the front
at the surfactant leading edge is further illustrated in figure 6(a).

The numerical results depicted in figures 4–6 are for a Cartesian strip geometry and
differ only quantitatively from those generated for a drop. Consequently, the basic
conclusions are no different in the latter case.

6.2. Bilayer

We now explore the more realistic scenario for a pulmonary airway wherein the
mucus moves atop the PCL layer; in all the simulations presented in this section the
initial height of the PCL is d0 = 0.25. It is expected that the results discussed in this
section will bear strong resemblance to those discussed in the single-layer case, with
the exception that the unyielded regions can now move atop the PCL. To recap: the
velocity field is

u(η, z, t) =

{
[ση − B]

1/n
+ (z − d) + (µση)

1/ndd for d < z < h

(µση)
1/ndz for 0 < z < d,

(6.2)

such that if the yield stress is significant (or equivalently n � 1) and ση � B then
u(η, z, t) ∼ (µση)

1/ndd throughout the mucus region, that is the velocity is independent
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Figure 7. The bilayer case: effect of µ. Simulation for a strip with Pe = 1000, β = 1000, n = nd = 1,
B = 0, d0 = 0.25 and µ = 5. The solution is shown at times t = 1 (dashed), t = 5 (dot-dashed) and
t = 10 (solid line) except in (d), where the solid line is for t = 40. (a) The height of the mucus layer
and (b) the front position for varying values of µ. Similarity scalings are used to show the height
in (c) and PCL height together with the similarity solutions (5.8) and (5.9) in (d); all similarity
solutions are shown as · ·+ · · .

of z within that layer. We can then utilize the self-similar analysis, discussed in § 5, to
deduce the free-surface profiles.

6.2.1. Effect of µ (with B = 0 and n = nd)

Initially we neglect yield stress and examine the case of two Newtonian layers (figure
7a–d) allowing the relative viscosities to vary by altering µ. Increasing µ is equivalent
to fixing the viscosity of the upper layer whilst decreasing the viscosity of the PCL
layer; thus the upper layer ultimately moves over a lubricated base. This explains
the results shown in figure 7(b) which indicate that although the fronts still progress
with the Newtonian scaling, the coefficients change and the front positions are ahead
of the single-layer, µ = 1, case. The other prominent features of the solution are the
higher, more sharply peaked, height profiles (the maximum height ∼ 2(µ1/nd0)

1/2 + 1
for large µ), the more pronounced drop at the origin relative to the the single-layer
case and the sharp jump in the PCL height layer. Figure 7(c, d) shows the similarity
solution as the dotted line with crosses. In the case of D(ξ) two similarity solutions,
(5.8) and (5.9), are shown in figure 7(d): for sufficiently large times (the solid line
is for t = 40) the secondary peak becomes increasingly aligned with the similarity
solution predicted by (5.9). The separation between the PCL height and mucus height
also narrows significantly just behind the peak in the height profile, as illustrated in
figure 7(c, d). This feature suggests that with the addition of elastic effects the mucus
layer may be prone to ‘pinching-off’ at this point; this would terminate the delivery
of surfactant. The sharp peak also naturally leads to queries regarding the stability of
these solutions. The effect of allowing the upper layer to shear thin is to yet further
exaggerate these features as shown in figure 8(a, b).
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Pe = 1000, β = 1000, nd = 1, B = 0, d0 = 0.25 and µ = 1. The solution is shown at times t = 1
(dashed), t = 5 (dot-dashed) and t = 40 (solid line). (a) The front position scalings as a function
of time. (b) and (c) The PCL height and height (n = 0.25) profiles versus similarity coordinate; the
similarity solution in (b) is shown as · ·+ · · .

6.2.2. Effect of B > 0 and n 6= nd (with µ = 1)

In figure 9 we consider the effect of shear thinning on the spreading process by
decreasing n in the upper layer; that is, the PCL layer is Newtonian, but the mucus
layer is not. Since the effects of decreasing n and increasing B are to reinforce
each other we consider each effect separately. As can be seen from figure 9(a) for
sufficiently small n the front position scaling (the slope of the front position curve)
rapidly approaches the Newtonian scaling; for larger n this occurs over a longer time
scale. The PCL height ultimately follows the Newtonian similarity solution, suitably
rescaled to allow for µ1/n, as is evidenced by figure 9(b) (the solutions take longer
to tend to the similarity results and here the solid line is for t = 40). As in figure
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Figure 10. The bilayer case: effect of B. Simulation for a strip with Pe = 1000, n = nd = 1, B = 0.2,
d0 = 0.25 and µ = 1. The solution is shown at times t = 1 (dashed), t = 5 (dot-dashed) and t = 100
(solid line). (a) The front position scalings as a function of time for varying B. (b) and (c) The PCL
height (evolved to t = 100) and height profiles, respectively, versus similarity coordinates with the
similarity solution shown as · ·+ · · in (b).

8(a), where we had a single shear-thinning layer, we find that in the bilayer case, with
the mucus shear thinning, the height profile becomes large and concentrated into a
narrow region. However, it now forms a considerably larger peak which grows over a
long time scale, but is ultimately bounded. As in the single-layer case the addition of
yield stress leads to very similar results to that of decreasing n as can be clearly seen
in figure 10; the choice of B in these figures is marginally less than the value given
in table 1: this is to maintain numerical accuracy, as further increasing B leads to
even more severe peak formation. This concentrated height peak is rationalized using
the discussion from § 5 where it is shown that for B � 1 or n � 1 in the similarity
coordinates the height equation decouples and is driven by the Newtonian height and
surfactant solutions. In the limit as the Péclet number tends to infinity the mucus is
completely concentrated at the shock position leading to the formation of a sharp
peak at that location. Finally, as far as the rheological effects are concerned, the
spreading of a drop of surfactant is qualitatively similar; in the interests of brevity
we omit the equivalent figures.

In many ways these numerical solutions are reminiscent of the discussion of mucus
clearance by a simulated cough in Basser et al. (1989). Although their experiment
is not identical to the situation modelled here, it was nevertheless noted that for a
current of air flowing over a layer of yield-stress material, a large avalanche of mucus
would develop once the mucus simulant layer was stressed enough to either slip on
the base or yield; a slipping basal layer of oil strongly accentuated the development
of that feature. Although the source of stress for the layer is different here, being
due to surface tension gradients, the resultant strongly peaked mucus profiles are
qualitatively similar.
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7. Concluding remarks
A thorough understanding of surfactant delivery within the lung depends upon a

variety of hydrodynamic, physico-chemical and rheological factors. In this, primarily
numerical, study we have concentrated upon the influence of two non-Newtonian
features of mucus on the spreading of insoluble surfactant on the surface of a mucus–
periciliary liquid bilayer: yield stress and shear thinning. These effects had hitherto
been unexplored in the literature. The conclusion is that either effect, or a combination
of both, have the potential to radically change the spreading rates over those deduced
for Newtonian fluids.

The more influential effect in our current study is that of yield stress: for a single-
layer system the height profiles and therefore the majority of the deposited surfactant
can be frozen in position. That is, the surface tension gradient is not sufficient to
drive the flow and the yield strength is sufficient to hold the profiles in place. Thus the
surfactant is ultimately transported not by Marangoni stresses, but solely by surface
diffusion, that is, very slowly. Substantially decreasing the power-law exponent also
has a similar effect; the height profiles are not frozen in position, but their progress is
retarded compared to the Newtonian case. The results are less clear-cut for a bilayer
as the PCL lubricates the base of the mucus layer and ultimately, even for a thin PCL
layer, one obtains the Newtonian spreading rates. The time taken for the solutions to
ultimately evolve to this state, however, increases with decreasing flow index, n, and
increasing dimensionless yield stress, B, as shown in figures 9(a) and 10(a), respectively.
Depending upon the viscosity of the mucus layer, for n = 1 and the values in table 1
forL,H and S, these times correspond to a dimensional value of λ seconds. For the
cases shown figure 10(a) this does not constitute a substantial fraction of the transient
transport times of 4–170 s (Espinosa & Kamm 1999) unless the mucus viscosity is
extremely large. However, these may grow to be quite significant for higher values of
B, which are more representative of mucus rheology. Moreover, different parts of a
diseased lung are affected in different ways and for locally thinned regions in the PCL
layer, or areas of deep mucus, the single-layer situation will be approached in which
spreading is more severely retarded by the effects of yield stress and shear thinning.

All of the simulations in the text have been for a deep layer of mucus, and the
PCL height has always been d0 = 0.25; since our estimate is from tracheal values it
may be that the mucus layer is thinner in small human airways. We briefly explore
varying the depth, and utilize dimensional variables, that is

t =
L2λ

SH t̃, x =Lx̃,
with the tilde denoting the dimensionless variables. We shall use the values for
L,H,S given in table 1, and take both layers to be Newtonian (n = 1). The viscosity
(or more precisely rescaled consistency for a non-Newtonian fluid) is that of mucus,
and we shall take this to be highly viscous, 1 Poise (a hundred times that of PCL), so
µ = 100. The initial condition is that of equation (6.1). We shall consider the position
of the surfactant leading edge as a function of time; the analysis in § 5 gives the front
position explicitly in terms of the parameter values. Figure 11 shows the front position
for a Cartesian geometry and Newtonian bilayers for values of d0, the PCL height,
of 0, 0.25, 0.5, 0.75, 1, that is, ranging from completely mucus, to completely PCL. The
effect of the PCL is to lubricate the base and this leads to results close to those
for PCL alone, nonetheless a deep mucus layer of height 0.75 decreases the distance
covered by the front position by a third. Although all of these cases spread with the
Newtonian scaling the difference in viscosity and depth leads to a large change in



256 R. V. Craster and O. K. Matar

1000

800

600

400

200

0 0.5 1.0 1.5 2.0 2.5

Front position (cm)

T
im

e 
(s

)
d0=0 d0=1

Figure 11. The front positions for a Newtonian bilayer in dimensional units for parameters given
in the text, and for PCL depths ranging from 0 to 1 in steps of 0.25.

the front position, and changes in the chosen viscosity values can affect comparisons
between more realistic and involved lung models (Espinosa & Kamm 1999).

Since experimentally mucus has significantly non-Newtonian characteristics (Basser
et al. 1989), incorporation of these effects into the recent lung modelling of Halpern et
al. (1998) and Espinosa & Kamm (1999) may be advantageous. Based on the results
of the present work, two major conclusions can be drawn with regard to the practical
issues of bolus dispersal: there are several options for liquid delivery and two primary
options (Halpern et al. 1998) are either as a liquid plug or via slow draining into the
lung; if there is substantial mucus present the latter is less likely to generate the large
surface tension gradients required to overcome the yield-stress and/or shear-thinning
effects, whereas the former should be more effective. It is seen that the latter doses are
less effective, and these, or initial ones if substantial endogenous surfactant is present,
should strive for rapid insertion to generate surface tension gradients which should
overwhelm the resistance of yield stress. Unfortunately, rapid insertion may also have
the effect of temporarily blocking the airways, particularly for infants, leading to
choking. The mucus rheology associated with specific pulmonary diseases, and the
thickness/quality of mucus generated by the lung, are also factors which will influence
the efficiency of surfactant delivery. The reason is that an increase in the ratio of the
mucus layer height to that of the PCL would again lead to a quasi-single-layer scenario
wherein the surfactant spreads over a high-yield-stress material with the adverse
consequences already discussed in this study. It may be that different diseases having
widely differing mucus quality will require appropriate adjustments in the treatment.

An intriguing aspect of the non-Newtonian case that we have not studied here
is the stability, or otherwise, of the pulse-like structures enhanced by yield-stress or
shear-thinning rheologies, particularly in a bilayer scenario. These peaks in the mucus
film thickness can reach heights well in excess of those reached in the Newtonian
case. Although the inclusion of capillary effects may act to smooth these sharp peaks
somewhat, their presence may still increase the possibility of liquid bridge formation
and hence blocking of the airways. Considering that recent stability analysis of the
spreading process has yielded that substantial transient amplification of disturbances
can be obtained in the Newtonian case (Matar & Troian 1997, 1999a, b) the pulses
in the mucus layer may also become vulnerable to transverse disturbances giving rise
to flow instabilities. The stability of the spreading process, particularly in the limit
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of B � 1 or n � 1, is therefore worthy of a detailed analysis, and such studies are
underway. Finally, although mucus is also known to possess viscoelastic rheological
characteristics (King 1980; Basser et al. 1989; Yeates 1991), such effects have not been
incorporated into the present analysis. These issues are also expected to be significant
and will be a subject of future work.
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